Thermodynamic Properties of an Interaction between Cooper Pairs and Electrons in Bismuth Based Cuprate Superconductivity

Odhiambo O. J.¹, Sakwa W. T.², Ayodo K. Y.3, Makokha W. J.¹ ¹Kibabii University, Department of Science Technology and Engineering ² Masinde Muliro University of Science and Technology, Department of Physics ³ Kaimosi Friends University College, Department of Physical Sciences Corresponding e-mail: jodhiambo@kibu.ac.ke

Citation: KIBU Conference (2017). Innovative Research and Knowledge for Global Competitiveness and Sustainable Development. Proceedings of 2nd Interdisciplinary International Scientific Conference 14 – 15 June 2017. Kibabii University Main campus, Bungoma Kenya ISBN: 978-9966-59-011-4

Abstract

A theoretical study considering Bi2201, Bi2212 and Bi2223 bismuth based cuprates whose critical Temperatures (T_C) are 20K, 95K and 110K with one, two and three CuO₂ planes respectively; based on an interaction of Cooper pair and an electron in Bismuth based cuprates oxide shows that there is a direct correlation between energy of interaction and the number of CuO₂ planes at the T_C. The specific heat for a mole of Bismuth based cuprates at T_C was found to be 7.471×10^{-24} JK⁻¹ regardless of the number of CuO₂ planes; though the specific heat per unit mass, Sommerfeld coefficient as well as entropy per unit mass decreased with an increase in the number of CuO₂ planes. The entropy of a mole of Bismuth based cuprates at T_C was found to be 5.603×10^{-24} JK⁻¹ irrespective of the T_C or mass. The peak Sommerfeld coefficient temperature was noted to occur at the ratio T/T_C=0.66 in the bismuth based cuprates.

Key Words – Superconductivity, Sommerfeld Coefficient, Specific Heat, Entropy