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Abstract 

We use coding theory to study the internal structure of simple groups. Coding theory deals with methods of 

constructing and analyzing error-correcting codes. In this paper, we construct all binary linear codes from 𝑀24 and 

determine their properties. We link these codes to designs and graphs.We develop the algorithm that determine these 

codes and add the algorithm to the Magma software.  
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1.0 Introduction 

Finite simple groups have been classified as  cyclic groups with prime order,  alternating groups of degree 

at least 5, a simple group of Lie type and ,the 26 sporadic simple groups based on external structures .This 

classification took many years and involved many researchers. The current research is about these classified 

groups and their internal structure. We use coding theory to study the internal structure of simple groups. 

Coding theory emerged following the publication of Shannon’s seminal 1948 paper [1].  Coding theory 

deals with methods of constructing and analyzing error-correcting codes. 

 

In a series of 3 lectures given at the NATO Advanced Study Institute “Information Security and Related 

Combinatorics” held in Croatia, the author discussed two methods for constructing codes and designs for 

finite groups (mostly simple finite groups) [3]. The first method dealt with construction of symmetric 1-

designs and binary codes obtained from the action on the maximal subgroups, of a finite group G. The 

second method introduces a technique from which a large number of non-symmetric 1-designs could be 

constructed. Using these methods they constructed codes from Janko groups, J1 and  J2 and from the 

sporadic group 𝐶𝑂2of Conway. 

Three methods have been used for constructing codes and designs for finite groups [3]. The first method 

dealt with construction of symmetric 1-designs and binary codes obtained from the action on the maximal 

subgroups, of a finite group G. The second method introduces a technique from which a large number of 

non-symmetric 1-designs could be constructed. In the third method, each primitive representation of a 

given permutation group G, meat-axe and magma are used to construct the associated permutation 

modules and subsequently a chain of its maximal submodules.   

In the 19th century E. Mathieu discovered and studied five multiply transitive permutation groups. The 

groups are called the Mathieu groups and it turned out that all five are simple. These remarkable groups 

are constructed in [2], with special focus on the small Mathieu groups M11 andM12. All maximal subgroups 

of M11 and M12 are described and classified. It is also shown that the other Mathieu groups are subgroups 

of M24. Finally the simplicity of the five Mathieu groups is proved.  

Though codes have been constructed from M24, only small degree of 24 was considered.In this paper we 

are interested in constructing codes of  M24 group using large degrees. We examine the properties of these 

sub modules as codes and present their weight distributions. Using Assmus-Mattson theorem and the 

transitivity of the groups, we shall determine some designs or graphs that are defined by code words of 

https://en.wikipedia.org/wiki/Cyclic_group
https://en.wikipedia.org/wiki/Alternating_group
https://en.wikipedia.org/wiki/Group_of_Lie_type
https://en.wikipedia.org/wiki/Sporadic_group
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several weights in the codes and we use the properties of these designs or graphs and their geometry to 

gain some insight into the nature of some classes of codewords, mainly those of minimum weight. 

 

2.0 Literature Review 

2.1 Introduction 

In this section we discuss some of the basic concepts that are used in this proposal. 

 
2.2 Modular Representations 

Let 𝐹 be a field of characteristic 𝑝 and let 𝑉 be an 𝐹 vector space. Let 𝐺 be a finite group of order 𝑛.  Then 

we define a linear representation 𝑉 of 𝐺 over 𝐹 as a homomorphism             ∅: G → GL(V). We say that the 

representation is faithful if ∅ is injective. Representations are similar or equivalent if they correspond to 

isomorphic 𝐹𝐺-modules. A module 𝑀 is irreducible or simple if the only submodules are 𝑀 and 0. If not 

then 𝑀 is reducible. 𝑀 is decomposable if there exist nonzero submodules M1 and M2 such that M = M1  ⊕

M2 . 𝑀 is completely reducible if it can be written as the direct sum of irreducible submodules.[4] 

 
2.3 Binary Linear Codes 

A binary linear (n, k) code C is a k-dimensional subspace of the n-dimensional vector space over  GF(2). A 

code C of length n, dimensionk, and minimum weight d, is denoted by [n, k, d]. The Hamming weight w(c) 

of a codeword c is the number of nonzero components in the code word. The Hamming distance between 

two codewords d(x;  y) is the number of places in which the codewords x and y differ. The minimum 

(Hamming) distance of a code 𝐶is the minimum distance between any two codewords in the code. In 

general, a code that has minimum distance d can be used to either detect up to d −  1 errors or correct up 

to [(d −  1)/2] errors. [4] 

A code is called self orthogonal if 𝑐 ⊑ 𝑐⊥. All the weights in a binary self orthogonal code must be even 

since every vector must be orthogonal to itself. A code is doubly even if all the codewords have weights 

divisible by 4. A code is self-dual if𝑐 = 𝑐⊥. If c is an [n, k] code, then 𝑐⊥is an [n, n-k] code.  
 

2.4 Designs 

An incidence structureD =  (P, B, I), with point setP, block set B and incidence I is a              𝑡 − (𝑣, 𝑘,  ) 

design, if |𝑃|  =  𝑣, every block β𝐵 is incident with precisely 𝑘 points, and every t distinct points are 

together incident with precisely  blocks. A design D is symmetric if it has the same number of points and 

blocks. A t − (v, k, 1) design is called a Steiner System. A  2 −  (v, 3, 1) Steiner system is called a Steiner 

Triple System. A  t − (v, 2,  ) design D can be regarded as a graph with ρ as points and β as edges.[4] 

 
3.0 Methodology 

In this paper, we use the following analytical methods: 

2 Generate the permutation representations of 𝑀24  of degree 216 from the Atlas of finite groups. 

3 Use  Magma software to: 

I) Determine the permutation module of the permutation representation of degree 216  

II) Use permutation modules to determine dimensions of all maximal submodules of the 

permutation module. 

III) List all the maximal submodules of the permutation modules. 

IV) Sort out the maximal submodules by removing the Isomorphic copies. 

V) Derive codes from the maximal submodules and then determine the properties of  these 

codes  

VI) Link these codes to some designs or graphs. 

4.0 Results 

4.1 The 24-Dimensional Representation 



Proceedings of Kibabii University 2nd Interdisciplinary International Scientific Conference; June 14-15, 2017 

We generate the permutation group M24 from the atlas of finite groups using a permutation representation 

of degree 276.The permutation module of this group is a Gmodule of dimension 276. By recursively 

determining a chain of maximal submodules of the permutation module we find that the permutation 

module has three maximal submodules of dimension 23, 12 and 1 respectively. From the 12 −dimensional 

maximal module we derive a linear code   C24,1 = [24, 12, 8]2 . C24,1 = [24, 12, 8]2is a self dual, self 

orthogonal, doubly even and projective code. This code is an extended golay code which was originally 

constructed using design theory. The design held by this code is S(5,8,24).  

 

4.2 The 276-Dimensional Representation 

We generate the permutation group 𝑀24 from the atlas of finite groups using a permutation representation 

of degree 276.The permutation module of this group is a Gmodule of dimension 276. By recursively 

determining a chain of maximal submodules of the permutation module we find that the permutation 

module has 26 maximal submodules after eliminating the isomorphic copies. For any permutation 

representation of degree n we denote the determined codes by  𝐶𝑛,1 ,𝐶𝑛,2…….. 𝐶𝑛,𝑟 , if r codes are obtained 

and by 𝐶𝑛, if we only have one code upto isomorphism. The codes and their properties are shown in the 

table 1. 

 

Table 1: Codes and their codes  
Code 𝑪𝒏,𝒓 Parameters Dual()𝑪𝒏,𝒓 Hull(𝑪𝒏,𝒓) Self Dual Self Orthogonal 

𝐶26,1 [276,265,3] [276,11,128] [276,11,128] False  False   

𝐶26,2 [276,275,2] [276,1,276] [276,1,276] False   False   

𝐶26,3  [276,22,7] [276,55] [276,55] False  False  

𝐶26,4 [276,254,3] [276,22,44] [276,22,44] False  False   

𝐶26,5 [276,264,4] [276,12,44] [276,12,44] False  False   

𝐶26,6 [276,210] [276,66] [276,66] False  False  

𝐶26,7 [ 276,220] [276,56] [276,56] False  False  

𝐶26,8 [276,253,4] [276,23,44] [276,23,44] False   False  

𝐶26,9 [276,199] [276,77] [276,77] False  False  

𝐶26,10 [276,209] [276,67] [276,66] False  False  

𝐶26,11 [76,252,4 ] [276,24,23] [276,22] False  False   

𝐶26,12 [276,79 ] [276,197] [276,77] False  False  

𝐶26,13 [ 276,198] [276,78] [276,77] False  False  

𝐶26,14 [276,208 ] [276,68] [276,66] False  False  

𝐶26,15 [276,68,23] [276,208] [276,66] False  False  

𝐶26,16 [276,78 ] [276,198] [276,77] False  False  

𝐶26,17 [276,197 ] [276,79] [276,77] False  false 

𝐶26,18 [ 276,24,23] [276,252] [276,22] False   False   

𝐶26,19 [276,67 ] [276,209] [276,66] False False 

𝐶26,20 [276,77] [276,199] [276,77] False True 

𝐶26,21 [276,186 ] [276,90] [276,66] False False 

𝐶26,22 [276,23,44] [276,253] [276,22] False  False   

𝐶26,23 [  276,66 ] [276,210] [276,66] False True 

𝐶26,24 [276,22,44 ] [276,254] [276,22,44] false   True  

𝐶26,25 [276,55 ] [276,221] [276,55] False True 

𝐶26,26 [276,11,128] [276,265] [276,11,128] False   True   

Theorem 1 

𝐶26,1
⊥ = 𝐶26,26 

𝐶26,3
⊥ = 𝐶26,25 

𝐶26,4
⊥ = 𝐶26,24 

𝐶26,6
⊥ = 𝐶26,23 

𝐶26,8
⊥ = 𝐶26,22 

𝐶26,9
⊥ = 𝐶26,20 
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𝐶26,10
⊥ = 𝐶26,19 

𝐶26,11
⊥ = 𝐶26,18 

PROOF 

As shown by magma  

 

Designs Held by Codes 
No  Design  Simple  Uniform  Balanced  Complete  Symmetric  Steiner  

1 1-(276,3,22) True  True  True  No  No  No  

2 2-(276,2,1 ) True  True  True  True  No  True  

4 1-(276,3,22 ) True  True  True  No  No  No  

5 1-(276,4,1617) True True  True  No  No  No  

8 1-(276,4,462) True  True  True  No  No  No  

11 1-( 276,4,462) True  True  True  No  No  No  

18 1-(276,23,2)  True  True  True  No  No  No  

22 1-(276,44,44 ) True  True  True  No  No  No  

24 1-(276,44,44) True  True  True  No  No  No  

26 1-(276,128,352) True  True  True  No  No  No  
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