

KIBABII UNIVERSITY COLLEGE

(A Constituent College of MasindeMuliro University of Science Technology) P.O. Box 1699-50200 Bungoma, Kenya Tel. 020-2028660/0708-085934/0734-831729 E-mail: enquiries@kibabiiuniversity.ac.ke

UNIVERSITY REGULAR EXAMINATIONS

2013 /2014 ACADEMIC YEAR

1ST YEAR 2ND SEMESTER EXAMINATIONS

(MAIN EXAMINATION)

REGULAR(PSSP)

FOR THE DEGREE OF BACHELOR EDUCATION (ARTS)

COURSE CODE: ESM 101

COURSE TITLE: QUANTITATIVE SKILLS 1

DATE: 16TH APRIL 2014 **TIME:** 2:00P.M. – 5:00P.M.

INSTRUCTIONS TO CANDIDATES:

Answer Question ONE and any other THREE Questions

QUESTION ONE.

- a) Distinguish between finite and infinite sets.
- b) Given the sets A= { Positive integers less that 40} and B= {All positive odd numbers multiples of 3 less than 50}:

List the elements of the following sets:-

i) A-B (2mks) ii) B-A (2mks)

(2mks)

c) Simplify
$$5\frac{2}{3} - \frac{3}{8}$$
 of $3\frac{5}{7} + 1\frac{7}{13}$. (4mks)

d) Matrix A =
$$\begin{bmatrix} 3 & 2 \\ -1 & -2 \end{bmatrix}$$
 (4mks)

Determine A⁻¹

- e) State any five characteristics of a good graph (5mks)f) Determine the three measures of central tendency for the data below (6mks)
- 26,38,27,16,18,98,67,39,45,65,76,43,49,87,86,56,43,23,21,42,87,64,32,43,35,48,45,37,39,48

QUESTION TWO.

The data below was capture by pupils during a field trip.

Classes	5-10	10-15	15-20	20-25	25-30	30-35	35-40	40-45
Frequency	5	6	15	10	5	4	2	2

Use the date to compute the:-

i)	Mean.	(5mks)
ii)	Median.	(5mks)
iii)	The mode	(5mks)

QUESTION THREE.

The steel production in a company is as presented in the table below.

Year	1990	1991	1992	1993	1994	1995	1996	1997
Production	352	366	361	366	400	435	420	419

i)	Compute moving averages of order 3.	(5mks)
ii)	Represent the information on a graph.	(6mks)
iii)	Comment on the trend.	(4mks)

QUESTION FOUR.

Given the matrix	$\mathbf{x} \mathbf{B} = \begin{bmatrix} 7 & 1 & 49 \\ 2 & 1 & -7 \\ 3 & 2 & 1 \end{bmatrix}$	
i) Sł	now that det $B = det B^T$.	(5mks)
ii) Fir	nd the inverse of Matrix B.	(5mks)
iii) De	etermine the value of A^2 - A.	(5mks)

QUESTION FIVE.

In a school of two hundred and seventy two students, seventy of them belong to the science club; thirty are members of both the science club and the debating club.

- a) Find the number of members of the debating club. (7mks)
- b) Use Venn diagrams to represent the following sets

AuBuC	(1mk)
AnBhC	(1mk)
ε-(AuBuC)	(1mk)
δ-(Α ^ Β^C)	(1mk)
A-B	(1mk)
(A ^ B ^ C)'	(1mk)
ε-(AuBuC)'	(2mks)
	AuBuC A∩B∩C Σ-(AuBuC) Σ-(A∩ B∩C) A-B (A ∩ B ∩ C)' Σ-(AuBuC)'