

KIBABII UNIVERSITY COLLEGE (KIBUCO)

MAIN CAMPUS

UNIVERSITY EXAMINATIONS 2014/2015 ACADEMIC YEAR

THIRD YEAR FIRST SEMESTER EXAMINATIONS

MAIN EXAMINATION

FOR THE DEGREE

OF

BACHELOR OF EDUCATION SCIENCE

COURSE CODE: STA 341

COURSE TITLE: THEORY OF ESTIMATION

DATE: Tuesday 13TH JANUARY, 2015

TIME: 3.00-5.00 P.M

INSTRUCTIONS TO CANDIDATES:

Answer Question ONE and any other Two Questions

TIME: 2 Hours

QUESTION 1:

- (a) List four desirable classical properties which an estimator should posses. (4 marks)
- (b) If \overline{X}_1 and \overline{X}_2 are the respective means of random samples of sizes n_1 and n_2 from a population with mean ~; prove that an unbiased estimator of ~ is given by

$$\hat{-} = \frac{n_1 \overline{X}_1 + n_2 \overline{X}_2}{n_1 + n_2}$$
 (6 marks)

(c) The following random sample was obtained from a population with mean \sim and variance, \uparrow ²

12, 8, 11, 10, 8, 8, 3, 9, 11, 10

Obtain the unbiased estimates of ~ and \uparrow^2 (5 marks) (d) Suppose that $E(\hat{r}_1) = E(\hat{r}_2) = r$, $Var(\hat{r}_1) = \uparrow_1^2$ and $Var(\hat{r}_2) = \uparrow_2^2$

A new unbiased estimator of π_3 is to be formed by

$$\hat{a}_{3} = a_{1} + (1 - a)_{2}$$

How should the constant 'a' be chosen in order to minimize the variance of $\hat{f}_{,,3}$?

Assume that \hat{x}_1 and \hat{x}_2 are independent. (5 marks)

(e)Define the following terms as used in theory of estimation:

(i)a point estimate(ii)a point estimator(iii)a parameter

(2+2+1 marks)

(f) Let X_1, X_2, \ldots, X_n be a random sample drawn from an exponentially distributed population with parameter " and probability density function given as

$$f(x) = {}_{"}e^{-{}_{"}x} , x > 0$$

= 0 elsewhere

Show that the maximum likelihood estimator (MLE) for " is
$$\frac{1}{\overline{X}} = \frac{n}{\sum_{i=1}^{n} X_i}$$

(5 marks)

QUESTION 2 :

(a)Consider a simple linear regression model of the form :

$$Y_i = S_0 + S_1 X_i + V_i$$
 for i= 1,2,,n

Where S_0 and S_1 are constants which are population parameters and V_i is the model error

By minimizing the residual sum of squares, obtain the least squares estimators of S_0 and S_1 . (10 marks)

(b)Let \hat{s}_0 and \hat{s}_1 be respectively the estimators of s_0 and s_1 . Show that,

(i)
$$E(S_0) = S_0$$
 (4 marks)

(ii)
$$E(S_1) = S_1$$
 (4 marks)

Explain the importance of the results in (i) and (ii) above, in estimation theory.

QUESTION 3:

(a)What is a consistent Statistic? (2 marks)
(b)Consider X₁, X₂,...,X_n to be a random sample of size n drawn from a population

with unknown mean ~ and variance \uparrow^2 . If S² is the sample variance, show that,

$$\frac{nS^2}{n-1}$$
 is a consistent estimator of \uparrow^2 (8 marks)

(c)For a random sample of size n, X_1, X_2, \dots, X_n drawn from a population with mean ~ and variance \uparrow ², show that

i)both
$$\frac{1}{2}(X_1 + X_2)$$
 and X_4 are unbiased estimators of ~ (5 marks)
ii) $\frac{1}{2}(X_1 + X_2)$ is not a consistent estimator of ~ (5 marks)

QUESTION 4 :

(a)Given a random sample X_1, X_2, \dots, X_n from a distribution having a probability density function, $f(x; ,), \in \Omega$, illustrate how you would get the maximum likelihood estimator \hat{f} for the population parameter f. (6 marks)

(b)Suppose that a random sample of size n is drawn from a Bernoulli distribution whose probability mass function is

$$f(x) = \int_{x}^{x} (1 - \int_{x}^{1-x}, \dots, x = 0, 1; 0 \le \int_{x}^{x} \le 1$$

Obtain the maximum likelihood estimator (MLE) for c (7 marks)

(c)Let X_1, X_2, \ldots, X_n be a random sample from a normal distribution, N(,, 1),

$$-\infty < x < \infty$$
. Show that X is the MLE for x (7 marks)

QUESTION 5:

(a)i)Define Sufficiency in relation to estimators (3 marks)

ii)State the factorization theorem of Fisher and Neyman pertaining to sufficiency

(4 marks)

iii) Let X₁, X₂,...,X_n be a random sample of size n from a Geometric distribution that has probability function

$$f(x) = (1 - x)^{x}$$
 for x=0,1,2,3,....; 0< x <1

Show that $T = \sum_{i=1}^{n} X_i$ is a sufficient statistic for " (6 marks)

(b) Let X₁, X₂,...,X_n be a random sample of size n from the negative exponential density,

> $f(x) = {}_{"}e^{-{}_{v}x}, ..., ..., for, ..., x > 0$ = 0 otherwise.

Obtain the method of moments estimator for " (7 marks)