

(Knowledge for Development)

KIBABII UNIVERSITY COLLEGE

A CONSTITUENT COLLEGE OF MASINDE MULIRO UNIVERSITY OF

SCIENCE AND TECHNOLOGY

UNIVERSITY EXAMINATIONS

2014/2015 ACADEMIC YEAR

SECOND YEAR SECOND SEMESTER

MAIN EXAMINATION

FOR THE DEGREE OF BACHELOR OF SCIENCE

AND BACHELOR OF EDUCATION

COURSE CODE: STA 242

COURSE TITLE: PROBABILITY AND DISTRIBUTION MODELS

DATE: 28/4/15 **TIME:** 8.00AM -10.00PM

INSTRUCTIONS TO CANDIDATES

Answer Question One in and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 4 Printed Pages. Please Turn Over.

QUESTION ONE (30MARKS)

- a) Let X and Y be two discrete random variables with a joint probability function f(x, y). Define
 - i. Marginal probability function of X
 - ii. Marginal probability function of Y (2marks)
- b) The distance between flaws on a long cable is exponentially distributed with mean 2m
 - i. Find the probability that the distance between two flows is greater than 15m (3marks)
 - ii. Find the probability that the distance between two flaws is between 8 and 20 (4marks)
- c) Given the joint density of two continuous random variables X and Y as shown below. Find the marginal and conditional p.d.f of X and Y (8marks)

$$f(x, y) = \begin{cases} \frac{1}{4}(1+x)|x| < 1, |y| < 1\\ 0 & 0 & het \end{cases}$$

- d) Consider an experiment of tossing the tetra-hedra (regular four sided polyhedron) each with sides labelled 1-4. Let X be the score on the 1st tetrahedron and X₁be the score on the 2nd tetrahedron. Let Y denote the maximum of X and X₁. Find the joint C.D.F of
 - i. F(1, 2) (2marks)
 - ii. F(4,3) (2marks)
- e) Let X and Y have a bivariate density

$$f(x, y) = \begin{cases} e^{(-x-y)} & x > 0, y > 0\\ 0 & 0 & het \end{cases}$$

Show that f(x, y) is a p.d.f (3marks)

f) Let X and Y be jointly distributed random variables with joint p.d.f as shown below. Obtain

$$f(x, y) = \begin{cases} p^{(x+y)} (1-p)^{2-x-y} & x = 0, 1, y = 0, 1\\ 0 & o he \end{cases}$$

i.	E(X)	
ii.	E(X+Y)	
iii.	E(x-Y)	(6marks)

QUESTION TWO (20MARKS)

The joint probability function of two discrete random variables X and Y is given by f(x, y) = c(2x + y), where x and y assume all integers such that $0 \le x \le 2$, $0 \le y \le 3$, and f(x, y) = 0 otherwise. The sample points (x, y) for which probabilities are different from zero are indicated in the table below. The probabilities associated with these points, given by c(2x + y), are shown in **Table below**.

xY	0	I	2	3	Totals ↓
0	õ	с	2c	3c	60
1	2c	3 <i>c</i>	4c	5c	14c
2	4c	5c	6c	7c	22c
Totals \rightarrow	6c	9c	12c	15c	42 <i>c</i>

- a) Find the value of the constant c.(2marks)
- **b)** Find P(X = 2, Y = 1).(1marks)
- c) Find $P(X \ge 1, Y \le 2)$.(1marks)
- **d)** Find the marginal probability function of X and Y.(4marks)
- e) Show that the random variables X and Y are independent.(3marks)
- f) Evaluate E(X), E(Y), E(X,Y), $E(X^2)$, $E(Y^2)$, Var(X), Var(Y) and Cov(X,Y)(9marks)

QUESTION THREE (20MARKS)

a) Given the joint density of X_1 and X_2 as

$$f(x, y) = \begin{cases} 1 & 0 < x_1 < 1 & 0 < x_2 < 1 \\ 0 & 0 & he \end{cases}$$

Find

- i. The joint density of $Y = X_1 + X_2$ and $Z = X_2(4marks)$
- ii. The marginal density of Y (3marks)
 - **b**) Show that the variance of the Exponential distribution is $1/\lambda^2$ (13marks)

QUESTION FOUR (20MARKS)

a) The joint probability density function of the thickness X and hole diameter Y(bolt in mm) of a randomly chosen washer is

$$f(x, y) = \begin{cases} \frac{1}{6}(x+y) & 1 \le x \le 2, 4 \le y \le 5\\ 0 & 0 & het \end{cases}$$

- i. Find the conditional probability density of Y given X=1.2 (7marks)
- ii. Find the probability that the hole diameter is less than or equal to 4.8 given that the thickness is 1.2mm (2marks)
- iii. Find the conditional expectation of y given that X = 1.2 (2marks)
- iv. Find the value of E [Y]?. Does it differ from E[Y/X=1.2] (3marks)
- b) Suppose that X and Y are the two discrete random variables with the joint p.d.f given by

$$f(x, y) = \frac{1}{54}(x + y) \ x = 1,2,3 \text{ and } y = 1,2,3,4$$

Determine the conditional distribution for Y given that X=x, hence calculate

i.
$$P(y=1/x=1)$$

ii. $P(Y=4/X=3)$ (6marks)

QUESTION FIVE (20MARKS)

- a) Suppose that Y1 and Y2 are random variables (discrete or continuous). Show that V(Y1 + Y2) = V(Y1) + V(Y2) + 2Cov(Y1, Y2) (4marks)
- b) A small health-food store stocks two deferent brands of grain. Let X denote the amount of brand 1 in stock and let Y denote the amount of brand 2 in stock (both X and Yare measured in 100s of lbs). The joint distribution of X and Y is

$$f_{x,y}(x,y) = \begin{cases} 24x & x > 0, y > 0, 0 < x + y < 1\\ 0 & 0 \ her \end{cases}$$

- i. Find the conditional pdf $f_{x/y}(x/y)$. (5marks)
- ii. Compute P(X>0.5/Y = 0.3). (4marks)
- iii. What is the variance for the total amount of grain in stock?(7marks)