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QUESTION ONE (30 MARKYS)

a

Use De Moivre’s theorem to show that cos5q =16cos®q — 20cos®q + 5cosq .

(4 marks)
State and prove the necessary condition for afunction f (x, y) to be harmonic.
(4 marks)
Find the first four terms of the Taylor series expansion for the function
f(2)= _ about z =4 and state the region of convergence. (5 marks)
(z-1)(z-3
Distinguish between conformal and isogonal mapping. (2 marks)
Given v(x,y) = 2xy —— y 5, use the Milne-Thomson method to find a function
X° +
u(x,y) suchthat f(z) =u+iv isanaytic. (5 marks)
Prove that if f(z) is anaytic within and on a simple closed curveCand ais any point
inside C then f (@) = —§ +Zaz (5marks)
2pi‘cz-a
Hence evaluate § — 2% 4 where Ciis lz+1-i[=2 (5 marks)

C(z*+2z+5)

QUESTION TWO (20 MARKYS)

N\ 4 .\5
Evauate (://_i_IJ Gij (4 marks)
+1 —1
. . 72 -2z . . -
Find theresidues of f(z) = at al its polesin thefinite plane.

(z+1)?%(z° +4)
(6 marks)

Obtain the Laurent’s expansion for the function f(z) = ﬁ in the region
+

i. 14<1 (4 marks)
i 1<|4<2 (3 marks)
i.  [4>2 (3 marks)

QUESTION THREE (20 MARKYS)

a Given two complex numbersz, and z, where |z|=r,|z,|=r,,a9(z)=0,and

arg(z,) =q,; show that
i 12,2,| = |z)|z,| (2 marks)
i. arg(z,z,) = arg(z,) + arg(z,) (2 marks)



Evaluate .[CZdZ from z=0 to z=4+ 2 alongthe curve C given by:

i. z=t%+it (3 marks)
ii. thelinefrom z=0to z=2i andthenthelinefrom z=2i to z=4+2i
(5 marks)
find the image of the rectangle whose vertices are (0,0),(1,0),(1,2),(0,2) by means of the
linear transformation w= (1+i)z+ 2—i. Also sketch the image. (6 marks)
Evaluate lim (22__ 3)(422+ ) (2 marks)
Hli (iz-2

QUESTION FOUR (20 MARKYS)

a

Solvethe equation z° + (2 —3) +5-i = 0.
(7 marks)

State and prove the Cauchy-Goursat theorem.
(5 marks)

Show that v(x,y)=e*(xcosy-ysiny) is a harmonic function and find the analytic
function for which e*(xcosy — ysiny) istheimaginary part. (8 marks)

QUESTION FIVE (20 MARKS)

a

Find the bilinear transformation which maps the points z, =2,z, =i,z, =-2 onto the

points w, =1L w, =i and w, = -1. (4 marks)
Expressthe function f(z) = ? intheform u+iv. (3 marks)
+z

Prove Laurent’s theorem: If f(z) isanalytic inside and on the boundary of aring shaped

region R bounded by two concentric circles C; and C, with centre at a and respective

redii r, and r, (r; >r,), then for al z in R, f(2)=) a,(z-a)"+> a,(z-a)"
n=0 n=1

wherea, :i§ L)ﬂdw, n=012...and a_, :if L)_ldw n=123....
2pi S (w—a)™ 2pi 7C (w—a)™™

(13 marks)



