

(Knowledge for Development)

KIBABII UNIVERSITY COLLEGE

A CONSTITUENT COLLEGE OF MASINDE MULIRO UNIVERSITY OF

SCIENCE AND TECHNOLOGY

UNIVERSITY EXAMINATIONS

2014/2015 ACADEMIC YEAR

THIRD YEAR SECOND SEMESTER

MAIN EXAMINATION

FOR THE DEGREE OF BACHELOR OF SCIENCE

AND BACHELOR OF EDUCATION

COURSE CODE: MAT 304

COURSE TITLE: COMPLEX ANALYSIS I

DATE: 28/4/15 **TIME**: 11.30AM -1.30PM

INSTRUCTIONS TO CANDIDATES

Answer Question One in and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 3 Printed Pages. Please Turn Over.

QUESTION ONE (30 MARKS)

- a. Use De Moivre's theorem to show that $\cos 5_{\mu} = 16 \cos^5 (-20 \cos^3 (+5 \cos (-100)))$.
 - (4 marks)

(4 marks)

- b. State and prove the necessary condition for a function f(x, y) to be harmonic.
- c. Find the first four terms of the Taylor series expansion for the function $f(z) = \frac{1}{(z-1)(z-3)}$ about z = 4 and state the region of convergence. (5 marks)
- d. Distinguish between conformal and isogonal mapping. (2 marks)
- e. Given $v(x, y) = 2xy \frac{y}{x^2 + y^2}$, use the Milne-Thomson method to find a function u(x, y) such that f(z) = u + iv is analytic. (5 marks)
- f. Prove that if f(z) is analytic within and on a simple closed curve C and a is any point 1 + f(z)

inside C then
$$f(a) = \frac{1}{2fi} \oint_C \frac{f(z)}{z-a} dz$$
 (5marks)

Hence evaluate
$$\oint_C \frac{(z+4)}{(z^2+2z+5)} dz$$
 where C is $|z+1-i| = 2$ (5 marks)

QUESTION TWO (20 MARKS)

a. Evaluate $\left(\frac{\sqrt{3}-i}{\sqrt{3}+i}\right)^4 \left(\frac{1+i}{1-i}\right)^5$ (4 marks)

b. Find the residues of $f(z) = \frac{z^2 - 2z}{(z+1)^2(z^2+4)}$ at all its poles in the finite plane.

(6 marks)

c. Obtain the Laurent's expansion for the function $f(z) = \frac{1}{z^2 - 3z + 2}$ in the region

- i. |z| < 1 (4 marks)
- ii. 1 < |z| < 2 (3 marks)
- iii. |z| > 2 (3 marks)

QUESTION THREE (20 MARKS)

a. Given two complex numbers z_1 and z_2 where $|z_1| = r_1, |z_2| = r_2, \arg(z_1) = \prod_1$ and $\arg(z_2) = \prod_{i=2}^n$; show that i. $|z_1 z_2| = |z_1| |z_2|$ (2 marks) ii. $\arg(z_1 z_2) = \arg(z_1) + \arg(z_2)$ (2 marks)

- b. Evaluate $\int_C \overline{z} dz$ from z = 0 to z = 4 + 2i along the curve C given by:
 - i. $z = t^2 + it$ (3 marks) ii. the line from z = 0 to z = 2i and then the line from z = 2i to z = 4 + 2i
- c. find the image of the rectangle whose vertices are (0,0), (1,0), (1,2), (0,2) by means of the linear transformation w = (1+i)z + 2 i. Also sketch the image. (6 marks)
- d. Evaluate $\lim_{z \to \frac{i}{2}} \frac{(2z-3)(4z+i)}{(iz-1)^2}$ (2 marks)

QUESTION FOUR (20 MARKS)

a. Solve the equation $z^{2} + (2i - 3) + 5 - i = 0$.

(7 marks)

(5 marks)

b. State and prove the Cauchy-Goursat theorem.

(5 marks)

c. Show that $v(x, y) = e^x(x \cos y - y \sin y)$ is a harmonic function and find the analytic function for which $e^x(x \cos y - y \sin y)$ is the imaginary part. (8 marks)

QUESTION FIVE (20 MARKS)

- a. Find the bilinear transformation which maps the points $z_1 = 2, z_2 = i, z_3 = -2$ onto the points $w_1 = 1, w_2 = i$ and $w_3 = -1$. (4 marks)
- b. Express the function $f(z) = \frac{1-z}{1+z}$ in the form u + iv. (3 marks)
- c. Prove Laurent's theorem: If f(z) is analytic inside and on the boundary of a ring shaped region *R* bounded by two concentric circles C_1 and C_2 with centre at *a* and respective

radii
$$r_1$$
 and $r_2 (r_1 > r_2)$, then for all z in R , $f(z) = \sum_{n=0}^{\infty} a_n (z-a)^n + \sum_{n=1}^{\infty} a_{-n} (z-a)^{-n}$

where
$$a_n = \frac{1}{2fi} \oint_{C_1} \frac{f(w)}{(w-a)^{n-1}} dw$$
, $n = 0, 1, 2, ..., \text{ and } a_{-n} = \frac{1}{2fi} \oint_{C_2} \frac{f(w)}{(w-a)^{-n+1}} dw$, $n = 1, 2, 3, ..., n$

(13 marks)