

(Knowledge for Development)

KIBABII UNIVERSITY COLLEGE

A CONSTITUENT COLLEGE OFMASINDE MULIRO UNIVERSITY OF

SCIENCE AND TECHNOLOGY

UNIVERSITY EXAMINATIONS

2014/2015 ACADEMIC YEAR

SECOND YEAR SECOND SEMESTER

MAIN EXAMINATION

FOR THE DEGREE OF BACHELOR OF SCIENCE

- COURSE CODE: MAT 222
- COURSE TITLE: CALCULUS III
- **DATE:** 30/4/15 **TIME:** 3.00PM-5.00PM

INSTRUCTIONS TO CANDIDATES

Answer Question One in and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 4 Printed Pages. Please Turn Over.

QUESTION ONE (30marks)

	(a) (i) Using first principles determine $f_x(x, y)$, of $f(x, y) = x^2y + 4xy^2 - 3x$	+ 2. (3mks)
	(ii) Given $f(x, y) = xe^{x^2y}$ find f_y at $(1, I_1 2)$.	(2mks)
(b)	(i) State the necessary sufficient conditions for the existence of etrema.	(2mks)
	(ii)Locate and identify etremum for $f(x, y) = (x - 1)(y - 1)$	(2mks)
(c)	(i) Define the Lagrange's multipliers.	(2mks)
	(ii) Find the stationery values of $x^2 + y^2 + z^2$ given that $a + b + c = p$.	(4mks)
(d)	Show that the series $\sum_{n=1}^{\infty} u_n$ is convergent if $\lim_{n \to \infty} u_n = 0$.	(3mks)
(e)	Use comparison test to show that the series $\sum_{n=1}^{\infty} \frac{1}{2+5^n}$ is convergent.	(2mks)
(f)	Show that if an infinite series $\sum u_n$ is absolutely convergent then it is converger	nt. (4mks)
(g)) (i) Define an improper integral	(1mks)
	(ii) Use the domination test to determine whether or not the the integral $\int_{a}^{\infty} \frac{d}{dt}$	$\frac{x}{d}$

(ii) Use the domination test to determine whether or not the the integral $\int_{\mathbb{C}}^{\infty} \frac{d}{1+x^2} d$ converges. (3mks)

(h) Show that a positive term series $\sum_n u_n$ is convergent if and only if its sequence of partial sums $\langle u_n \rangle$ is bounded above. (4mks)

QUESTION TWO (20marks)

(a) (i)State and prove the Weierstress theorem (M-test) for uniform convergence. (6mks)

(ii)Using the Weierstress M-test show that $\sum f_n(x) = \sum \frac{c}{n^2}$ converges uniformly.(2mks)

(b) (i) Show that the series $\sum_{n=1}^{\infty} x_n$ is convergent if and only if for each $\varepsilon > 0$, there exists a positive integer m such that $|x_{m+1} + x_{m+2} + \cdots + x_n| < \varepsilon, \forall n \ge m$. (4mks)

ii) Show that the series $1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$ is not convergent. (4mks)

(c) (i) Define a power series (1mk)

ii) Find all values of x for which the power series $\sum \frac{n}{n} x^n$ is absolutely convergent. (3mks)

QUESTION THREE (20 marks)

a) (i) Define an implicit function.

(ii) Find
$$\frac{\partial}{\partial}$$
 and $\frac{\partial}{\partial}$ given $x^2y + y^2z + x = 0.$ (2mks)

(1mk)

b) Find the equation of the tangent plane to the paraboloid $Z = 1 - \frac{1}{1}(x^2 + 4y^2)$ at the point $(1,1,\frac{1}{2})$ (4mks)

c) Find
$$\frac{\partial}{\partial}$$
 and $\frac{\partial}{\partial}$ given $f(x, y) = 4x^2 + xy^2$ where $x = r + s$ and $y = r - s$ (4mks)

d) Find the tangent plane and normal line to the surface $f(x, y, z) = x^2 + y^2 + z^2 - 4 = 0$ at the point $(1,1,\sqrt{2})$. (3mks)

e) Find the extrema for f(x, y) = s in the domain $0 \le x \le n, 0 \le y \le n$. (4mks)

f) Find the slope of the surface given by $f(x, y) = -\frac{x^2}{2} - y^2 + \frac{2}{8}$ at the point $(\frac{1}{2}, 1, 2)$ in the *x*-direction and in the *y*-direction. (2mks)

QUESTION FOUR (13MKS)

- (a) Determine whether or not the following integrals converge (i) $\int_{a}^{\infty} \frac{1}{x} d$, $a \ge 0$ (ii) $\int_{a}^{\infty} \frac{1}{x^{2}} d$, a > 0. (4mks)
- (b) Evaluate $\int_{-\infty}^{+\infty} \frac{1}{x^2+1} d$ (3mks)
- (c) Use μ -test to determine whether the following improper integrals are convergent or divergent

i)
$$\int_{a}^{\infty} \frac{d}{x^{\frac{1}{2}}(1+x^{\frac{1}{2}})}, a > 0$$
 ii) $\int_{0}^{\infty} \frac{x}{(1+x)^{2}} d$, $a > 0$ iii) $\int_{a}^{\infty} \frac{x^{2m}}{1+x^{2n}} d$, $a > 0$. (7mks)

(d) i) State the Dirichlet's test for convergence for an improper integral. (2mks)

ii) Test for the convergence of
$$\int_a^{\infty} \frac{s_i}{\sqrt{x}} d$$
, $a > 0$ using the Dirichlet's test. (3mks)

(e) Find the Cauchy's principal value of $\int_{\mathbb{C}}^{1} \frac{1}{x^{\frac{3}{2}}} d$ (2mks)

QUESTION FIVE (20 MKS)

(a) Evaluate $\iint_R f(x, y)d$ for $f(x, y) = 1 - 6x^2y$ and $0 \le x \le 2, -1 \le y \le 1$. (2mks)

(b) Evaluate $\iint_R \frac{s_1}{x} d$ where R is the triangle in the x plane bounded by the x-axis, the line y = x and the line x = 1. (3mks)

(c) Find the area of the region bounded by $y = 2x^2$ and $y^2 = 4x$. (4mks)

(d) Find the average value of f(x, y) = x over the rectangle

$$R: 0 \le x \le \pi, 0 \le y \le 1. \tag{4mks}$$

(e) i) Define conditional convergence for improper integrals. (2mks)

ii)Check for convergence, conditional convergence or divergence for $\int_0^{\infty} f(x)d$ where f(x)

is defined as follows:
$$f(x) = \begin{cases} 1, & 0 \le x < 1 \\ -\frac{1}{2}, & 1 \le x < 2 \\ \frac{1}{3}, & 2 \le x < 3 \\ -\frac{1}{4}, & 3 \le x < 4 \\ \left(-\frac{1}{n}\right), & n-1 \le x < n \end{cases}$$
 (5mks)