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QUESTION ONE (COMPULSORY) (30 MARKS)

a) Show thatif X# 0, then X *#0 and X is unique. (3mks)

b) For every X# 0, show that X* > 0, hence show that 1> 0. (3mks)

c) Let (S, <) be an ordered set and E a subset of S, if the least upper bound of E (lubE)

and the greatest lower bound of E (gIbE) exist. Show that i) the IubE is unique
(4 mks)

ii) the glb.E is unique. (4 mks)
d) Show that J/3 is an irrational number. (4mks)
e) State the completeness axiom for R (2mks)

f) Let A be a nonvoid subset of R which is bounded above. Define a set
B by B={—X;X € A}, show that B is bounded below and
-sup A= inf B. (4mks)
g) If a and b are given real numbers such that for every real number
e>0, a<b+e,showthat a<b (5mks)
h) Define an inductive set? (2mks)

QUESTION TWO (20 MARKS)

a) For any subset E of a metric space (X, I ), prove that E® isan open set.
(6mks)

b) Consider the metric space (R,d) and let f :R — R be defined by f (X) = X|.
Show that f isuniformly continuous. (6mks)

c) Show that the limit of a convergent sequence is unique in a metric space (8mks)

QUESTION THREE (20 MARKS)

a) Show that every infinite set E contains a countable subset A. (7mks)

b) Differentiate between an algebraic and a transcendental number giving examples in
each case (3mks)



c) Does the equation X% +1=0 have a solution in R ? Show your working. (4mks)
d) Define the following terms;

i. A metric space (4mks)
ii.  Aninterior point of a set E (2mks)

QUESTION FOUR (20 MARKS)

a) Suppose that an open interval (0,1)isequivalentto R . Show that R is
uncountable (10mks)

b) State and provide a proof of Cauchy -Schwarz inequality. (10mks)

QUESTION FIVE (20 MARKS)

a) Let A and B be nonvoid subsets of R and define the set
A+B={x+y;xe A yeB},
b)
i. If A and B are bounded above, then show that A+B is also bounded above
and sup(A+B)=sup.A+sup.B
ii. (5bmks)
iii.  If A and B are bounded below, then show that A+B is also bounded below
and inf.(A+B)=inf. A+inf. B (bmks)

c) For every real numbers X and a, a>0, show that | X|<a iff Xxe[—a,a] (4mks)

d) Let A, B, C be nonvoid sets and f : A— B and g: B — C be bijections. Then, prove
that (go f) ™" exists and (go f) " =f tog™. (6 mks)



