KIBABII UNIVERSITY COLLEGE FIRST YEAR SECOND SEMESTER 2014 EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE IN MATHEMATICS *COURSE CODE*: **MAT 122**; TIME: 3 HOURS *COURSE TITLE*: **ELEMENTARY APPLIED MATHEMATICS**

Attempt Question ONE and ANY Other TWO questions

QUESTION 1 (30MARKS)

(a) A straight line passes through the point $P(x_1, y_1)$ and $Q(x_2, y_2)$ with co-ordinates. P(0, 2) and Q(1, 5). Find the equation of this straight line. [3mks]

(b) Two lines are such that the first line has a gradient -1 and passes through R(2, 1). The second line passes through two points with co-ordinates P(2, 0) and Q(0, 4). Find the equation of both lines and the co-ordinates of their intersection. [4mks]

(c) Find k given that the distance between (k, 0) and (0, 2k) is 20m. [3mks] (d) A car that has been traveling at 80m/s is brought to rest at constant deceleration 200m from where the brakes were applied. How far has the car moved when its velocity has been reduced by 20m/s [6mks]

(e) Determine the vector projection of $\mathbf{a} = -\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$ onto $\mathbf{b} = 3\mathbf{i} + 4\mathbf{j} + \mathbf{k}$ [4mks]

(f) Find the values of θ for which the curve $r = 2(1 - \cos\theta)$ has vertical tangents. [4mks]

(g) Distinguish between the terms impulse and momentum.	[2mks]
(h) Derive the equation of motion give n by $v^2 = u^2 + 2as$.	[4mks]
QUESTION 2 (20MARKS)	

(a) A ball is thrown vertically upwards at 20m/s. Find;

(i) The maximum height.	[3 m k s]
(ii) The time taken to reach maximum height.	[3mks]
(iii) The time of flight.	[2mks]

(b) Show from Newton's law of Motion that Force = mass × acceleration.[5mks]

(c) Write the equation of the plane through the points A(1,0,1), B(2,2,0)

and C(3, 1, 4). [5mks] (d) Convert 2x+5y = 3-xy into polar equation. [2mks] QUESTION 3 (20MARKS) (a) Find the cartesian equation of the curve; $\frac{2}{y} = 1 + \cos\theta$. [10mks] (b) Find the slope of the tangent line to the curve $r = 4 = 4\cos\theta$ and $\theta = \frac{\pi}{3}$. $[10 \mathrm{mks}]$ QUESTION 4 (20MARKS) (a) Find the direction cosines and direction angles given the vector, $\mathbf{v} = -2\mathbf{i} + 3\mathbf{j} + 5\mathbf{k}$ and verify the formula $\cos^2\alpha + \cos^2\beta + \cos^2\gamma$. $[10 \mathrm{mks}]$ (b) Find the equation of the circle passing through the points P(2, 1), Q(0, 5), R(-1, 2)[10mks] using centre and radius form of the circle. QUESTION 5 (20MARKS) (a) Find the line of intersection of the planes x - 2y + z = 0; 2x + 3y - 2z = 0.[10mks]

(b) Calculate the length of the spiral $r = e^{\theta}$ between $\theta = 0$ and $\theta = 1$

[4mks]

(c) Find the area of the region within the entire cardiod $r = 1 + \cos\theta$. [6mks]