

KIBABII UNIVERSITY COLLEGE

(A Constituent College of MasindeMuliro University of Science Technology) P.O. Box 1699-50200 Bungoma, Kenya Tel. 020-2028660/0708-085934/0734-831729 E-mail: enquiries@kibabiiuniversity.ac.ke

UNIVERSITY REGULAR EXAMINATIONS

2013 /2014 ACADEMIC YEAR

1ST YEAR 1ST SEMESTER EXAMINATIONS

(MAIN EXAMINATION)

FOR THE DEGREE OF BACHELOR EDUCATION (ARTS)

COURSE CODE: ECO 103

COURSE TITLE: MATHEMATICS FOR ECONOMISTS

DATE: 14TH AUGUST, 2014

TIME: 9.00 AM – 12.00 NOON

INSTRUCTIONS TO CANDIDATES:

• Answer question **ONE** and any other **THREE** questions from Section B

QUESTION ONE

a) Given the system of matrixes below find:-

i)	Product	(3mks)
ii)	The sum	(3mks)
iii)	Quotient	(3mks)
• 、	Delever	(2

iv) Determinant (3mks)

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 2 & 2 \\ 1 & 2 & 1 \end{pmatrix}$$
$$B = \begin{pmatrix} 3 & 1 & 1 \\ 4 & 2 & 2 \\ 5 & 3 & 1 \end{pmatrix}$$

b) The market situation defined by following demand and supply curves.

When Qd = Quantity demanded

Determine

	i)	Equilibrium quantity Q.	(3mks)
	ii)	Equilibrium price p.	(3mks)
c)	Defin	ie	
	i)	Price elasticity of demand.	(2mks)
	ii)	Monopolistic market structure.	(2mks)
	iii)	Perfect market structure.	(2mks)
d)	Giver	n the following total cost function	
	Tc = a	$a + b_1 Q + b_2 Q^2 - b_3 Q^3$	
	Find		
i	i)	ATC, AFC, AVC, MC.	(6mks)

QUESTION TWO

Using the following national income model:-

$$Y = C + I + G + X - M$$

$$C = u + by^{d}$$

$$I = r^{o} + \frac{r}{R}$$

$$T = t_{o} + \frac{t}{y}$$

$$G = G_{o} \quad x = X_{o}$$

$$M = M_{o} + \frac{m}{y}$$
Where c = consumption
$$I = Investment$$

$$G = Government expenditure$$

$$X = Exports$$

$$M = Imports$$

$$i) Find the equilibrium income. (5mks)$$

$$ii) What does a, b, t, mo and \frac{m}{y} stand for. (5mks)$$

$$iii) Find the rate of change of equilibrium income with respect of G and R. (4mks)$$

iv) Give value of income at equilibrium if a = 10 b = 0.5 to = 100, ro = $4\frac{m}{y}$ = 4 I= 2 (1mk)

QUESTION THREE

- a) Draw the cure for the function Y = $4 + 0.1x^2$ (7.5mks)
- b) Work out (i) log₃ (81) (27)

(ii)
$$\log_5\left(\frac{125}{625}\right)$$

c)
$$\frac{2x^3 + x^2 - 1}{x^2 - 1}$$
 (7.5mks)

QUESTION FOUR

In a class of 250 students the courses taken by students are distributed as give below:

Physic	s = 70			
Chemistry = 50				
Physics and chemistry = 15				
Physics and Biology = 2				
Biology = 18				
i) ii)	Draw and venn diagram. Determine the total number of students =	(8mks)		
	(a) Who takes 2 courses only?	(3.5mks)		

QUESTION FIVE

Using Cramer's Rule work out the values of X ₁ , X ₂ and X ₃ .	(15mks)
---	---------

 $2x_1 + 2x_2 - 3x_3 = 24$

 $X_1 - 2x_2 + 4x_3 = 36$

 $4x_1 + x_2 + 3x_3 = 18$