

KIBABII UNIVERSITY COLLEGE

(A Constituent College of MasindeMuliro University of Science Technology)

P.O. Box 1699-50200 Bungoma, Kenya

Tel. 020-2028660/0708-085934/0734-831729

E-mail: enquiries@kibabiiuniversity.ac.ke

UNIVERSITY REGULAR EXAMINATIONS

2013/2014 ACADEMIC YEAR

1ST YEAR 1ST SEMESTER EXAMINATIONS

FOR THE DEGREE OF POST GRADUATE DIPLOMA IN IT

COURSE CODE: PGD 713

COURSE TITLE: INTRODUCTION TO DIGITAL LOGIC

DATE: 24TH APRIL, 2014 TIME: 9:00A.M.-12 NOON

INSTRUCTIONS

• Answer **QUESTION ONE** and attempt **ANY OTHER TWO** questions from the following five questions

1(a)	Distin I Ii	guish between the following combinational and sequential circuits		
	Ii Iii	register and memory a digital and analogue signal	6 marks	
if I	 b) A binary pattern is given as 1001011101010100 determine its decimal equivalent if the pattern is considered to be a: I BCD number Ii Excess three BCD 			
	i signed		3 marks	
(c) C	Convert t I Ii	the following decimal numbers to binary 567 47.25	4 marks	
d)	State a	any TWO features that can be used to evaluate the performes	nance of logic 2 marks	
e)	With aid of truth table determine the output expression implement even partition a four input binary bit.			
		5 m	arks	
2(a)		With the aid of a truth table show that sums part of a full adder circuit can be implemented using exclusive all only and hence implement the full adder 14 marks		
(b)	Distin I Ii Iii	guish between min term and maximum term parallel adder and serial adder Positive and Negative logic	6 marks	
3(a)		With aid of a circuit diagram and truth table explain the operation of 3 input TTL NAND gate. 10 marks		
(b)	Explai	in any two problems associated with the totem pole outpu	t 4 marks	
(c)	A TTL NAND gates has the following output parameters $I_{OH}=500\mu A,~I_{IH}=50\mu A$ and $I_{OL}=16mA,~I_{IL}=0.8$ mA determine the fan out for :			
	I Ii	High output low output	6 marks	
4(a)		With aid of circuit diagram and truth table explain the principle operation of RS NAND gate flip flop 10 marks		
(b)		With aid a timing waveform and logic circuit implement a modulo 10 synchronous counter 10 marks		
5(a)	Distin I Ii	guish between the following a ring counter and Johnson counter PIPO register and SIPO	4 marks	

1(a)

- (b) Data is received over common line but has to be distributed over four devices. With aid of truth table Implement logic circuit to solve this problem 10 marks
- (c) Map on K-Map the exclusive OR function as Sum Of Products and as Product of Sums 6 marks