

KIBABII UNIVERSITY COLLEGE

(A Constituent College of MasindeMuliro University of Science Technology) P.O. Box 1699-50200 Bungoma, Kenya Tel. 020-2028660/0708-085934/0734-831729 E-mail: enquiries@kibabiiuniversity.ac.ke

UNI VERSITY REGULAR EXAMINATIONS

2013/2014 ACADEMIC YEAR SECOND YEAR SECOND SEMESTER EXAMINATIONS

FOR THE DEGREE

OF

BACHELOR OF SCIENCE (COMPUTER SCIENCE)

COURSE CODE: CSC 220

COURSE TITLE: ELECTRONICS

DATE:23RD APRIL, 2014

TIME: 9:00A.M.-12 NOON

INSTRUCTIONS

Answer QUESTION ONE and attempt ANY OTHERTWO questions

QUESTION ONE (COMPULSORY) - (30mks)

- a) Differentiate between the following terms:
 - i) Intrinsic and extrinsic semiconductors
 - ii) Donor and acceptor atoms
- b) i) Using appropriate illustration explain three classification of materials in terms of energy levels. (3mks)
 - ii) Using basic illustrations, describe the principle of operation of a photodiode. (2mks)
- c) (i) State two uses of a transistor
 - (ii) Using transistor current relationship, derive the relationship between and
 - (iii) Briefly describe three modes of connection of a transistor in a circuit.
 - (iv) Explain how a transistor is biased for amplification.
- d) For the transistor circuit shown in figure 1d below, determine:-
 - (i) I_E
 - (ii) I_B
 - (iii) I_C
 - (iv) V_{CE}

Figure 1d

e)	(i) Sta	ate the difference between a triac and a diac	(2mks)
	(ii) St	ate two advantages of class B amplifier over class A amplifier	(2mks)
	(iii) D	Differentiate between small signal and large signal amplifiers	(2mks)
f)	Expla		
	(i)	Transconductance	
	(ii)	Pinch-off voltage	(2mks)

g) State and explain four attributes of switched mode power supply (4mks)

QUESTION TWO

- a) (i) Draw a circuit diagram of a common emitter transistor amplifier using capacitor coupling.
 - (ii) State three methods of coupling in transistor amplifiers
 - (iii) A given transistor has =0.987. The transistor is connected with emitter grounded. If the collector current changed by 0.6mA, calculate the change in base current.

(10mks)

(4mks)

(5mks)

(4mks)

- b) (i) Explain the cut-off and saturation conditions of a transistor. (4mks)
 - (ii) Draw the circuit diagram of a transformer coupled transistor amplifier and explain its frequency response. (6mks)

QUESTION THREE

(a) Explain the effect of negative feedback on the following in amplifier;

	(i)	Stability of amplifier again		
	(ii)	Bandwidth	(6mks)	
(b)	Explain	n briefly how n- type and p- type materials are formed.	(4mks)	
(c)	Explain	n the following terms as applied to Zener diode;		
	(i)	Zenervoltage		
	(ii)	Leakage region	(4mks)	
(d)	With th	he aid of diagrams describe the movement of charge carriers in an NPN transistor		
	when the collector junction is reversed- biased and the emitter junction is forward-			

QUESTION FOUR

biased.

- (a) (i) With the aid of diagrams, briefly explain the following;
 - Forward biasing
 - Reverse biasing (4mks)
 - (iii) Sketch the dc load line for the figure shown below (Given $V_{BE}=0.7$, = 50)

- (iii) For the circuit shown in (ii) above find:-
 - Base current, I_B
 - Collector- emitter voltage, V_{CE}
- (b) (i) For the Zener shunt regulator of figure 4(b), determine the load current, minimum and maximum zener current. (6mks)

(4mks)

(6mks)

(4mks)

(c) Name four types of thyristors.

QUESTION FIVE

- (a) Explain the following terms;
 - (i) Positive feedback.
 - (ii) Negative feedback. (4mks)
- (b) With the aid of diagrams, illustrate four types of feedback. (4mks)
- (c) A class A transformer coupled power amplifier has zero signal collector current of 50mA. If the collector supply voltage is 5V, find;
 - (i) The max ac power output.
 - (ii) The power rating of transistor
 - (iii) The max collector efficiency. (6mks)
- d) Using appropriate diagrams, explain the operation of an ordinary diode in full-wave rectification. (4mks)
- e) State two advantages of FETs over BJTs. (2mks)