

KIBABII UNIVERSITY COLLEGE

(constituent college of MMUST)

UNIVERSITY EXAMINATIONS

2014/2015 ACADEMIC YEAR

THIRD YEAR FIRST SEMESTER EXAMINATIONS

FOR THE DEGREE OF BACHELOR OF SCIENCE (COMPUTER SCIENCE)

COURSE CODE: CSC 353E

COURSE TITLE: Digital System Design

DATE 6TH MAY 2015

TIME: 3.00-5.00PM

INSTRUCTIONS

• Answer **QUESTION ONE** and attempt **ANY OTHER TWO** questions from the following five questions

Question One (30 marks)

- a) Some of the common operations that digital designers wish to perform are listed below. , For each, identify a common MSI device that could apply. 6 marks
- (b) For a Guillotine machine is an example of an interlock machine, for it to operate safely; it is required that the operator should press two switches that are apart using ,both hands while simultaneously pressing a foot switch. LED and Photodetector are so, aligned that in case he bends over into the path of the guillotine he obstructions, stopping the guillotine.

(i) Define suitable logic expression for the safe operation of guillotine.							
(ii) Use a universal gate to implement the operation							
(c) Co (d)	 c) Compare the Mealy and Moore Machines d) Describe the basic building block of (state Machine) Chart c) Discuss the two types of control unit design 						
(e)	Discuss the two types of control unit design	8 marks					
(f)	Distinguish between combination and sequential circuits	2 marks					

Question Two 20 marks

Maintaining control over the bus sources, to assure only one talker at a time, is very much a concern of the designer of the bus. Illustrate the use of four control mechanisms, listed below for Bus access.

- i. multiplexer
- ii. OR gates
- iii. Open-collector gates
- iv. Three-state outputs.

Question Three (20 marks)

(a) Wafula has several standard logic gates and is thinking of constructing a circuit to add binary bits. Using a truth table and logic minimization and a schematic diagram illustrate how this can be done.

8 marks

- (b) Illustrate how Wafula synthesis a ALU what of his solution in (a) Above 8 marks
- (c) When tries to increase the number of bits he realises that system is slowing down.Suggest a possible flaw and remedy to his design.4 marks

Question Four (20 marks)

(a) With aid of a circuit diagram and truth table illustrate the operation of 3 inputs TTL NAND gate. 4 marks

- (b) Illustrate any two problems associated with the totem pole output 4 marks
- (c) Your have designed a digital system that has be implemented in Maji Moto Computing Ventures. However the system is faulty. Discuss techniques and tools that you could use troubleshooting the system
 12 marks

Question Five (20 marks)

(a) Figure 1 below shows a vending machine that releases an item after insertion of 15 cents. it has single slot, nickel, dime. Nickel has value of five cents while a dime has value of ten cent.

Figure 1: Vending Machine

i.	Provide and abstraction for the scenario involves probable input sequence	, state
	diagram and assumption	
	4 marks	
ii.	Minimise the number of states	3
	marks	

iii. Uniquely encode states marks

(b) rubic r address map or various memory emps in digital system. Osing the table																	
	A15	A14	A13	A12	A11	A1	A9	A8	A7	A6	A5	A4	A3	A2	Α	A0	
						0									1		
0000-	0	0	0	0	0	0	Chip address										ROM1
03FF																	
0400-	0	0	0	0	0	1	Chip address I										
07FF							-										
0800-	0	0	0	0	1	0	Chip	Chip address									
0BFF							-										
0C00-	0	0	0	0	1	1	0	0	Chip	addr	ess						RAM1
0CFF									_								
0D00-	0	0	0	0	1	1	0	1	Chip	addr	ess						RAM2
0DFF									-								
0E00-	0	0	0	0	1	1	1	0	Chip	addr	ess						RAM3
0EFF									-								
0F00-	0	0	0	0	1	1	1	1	Chip	addr	ess						RAM4
0FFF																	

2

(b) Table 1 address map of various memory chips in digital system. Using the table

To deduce the address lines to select:

i) A valid memory address The address line A12 to A15 must be logical 0

ii) RAM OR ROM When A10 = A11 = 1 ram address otherwise ROM

iii) A specific ROM deviceSpecific rom device is determine by the address of A10 and A11

iv) A specific RAM device RAM device by A9 and A8

v) A location within a specific ROM A0 to A9

vi) A location within a specific RAM A0 to A7

11 marks