

(Knowledge for Development)

KIBABII UNIVERSITY COLLEGE

- A CONSTITUENT COLLEGE OF
- MASINDE MULIRO UNIVERSITY OF

SCIENCE AND TECHNOLOGY

UNIVERSITY EXAMINATIONS

2014/2015 ACADEMIC YEAR

THIRD YEAR SECOND SEMESTER

MAIN EXAMINATION

FOR THE DEGREE OF

BACHELOR OFSCIENCE COMPUTER SCIENCE

COURSE CODE: CSC 321

COURSE TITLE: COMPUTER ARCHITECTURE

DATE: 7TH MAY, 2015 TIME: 8.00AM-10.00AM

INSTRUCTIONS TO CANDIDATES

Answer Question One in Section A and Any other TWO (2) Questions in Section B

TIME: 2 Hours

QUESTION ONE (30 Mk)

i.	State and briefly explain the number of possible Boolean functions for two	
	variables n=2	(4 Mk)
ii.	State and explain one major advantage of CMOS	(4 Mk)
iii.	With clear step by step explanation implement the operation	
	below in two's compliment:	(4 Mk)
	-6 + -13	
iv.	What are the major components of a CPU?	(3 Mk)
v.	How many 8 bits words can 64K memory hold?	(1 Mk)
vi.	Explain your answer in (v) above	(3 Mk)
vii.	Name the techniques that automatically move program and	
	data blocks into the physical main memory when they	
	are required for execution.	(1 Mk)
viii.	Explain the techniques in (vii) above	(3 Mk)
ix.	A computer has memory of 256k words of 32 bits each, how	
	many bits are required to specify the address part?	(1 Mk)
х.	Justify your answer in (ix) above	(2 Mk)
xi.	Which is the simplest way to for a computer system to	
	determine cache locations in which to store memory blocks?	(1 Mk)
xii.	Justify the your answer in (xi) above	(3 Mk)

QUESTION 2 Memory (20 Mk)

i.	Discuss Computer Memory types based on data units'	
	access methods	(8 Mk)
ii.	Briefly explain any two performance parameters users consider	
	in memory deployment	(4 Mk)
iii.	Briefly discuss the following types of ROM	(8 Mk)

QUESTION THREE I/O Sub System (20 Mk)

i. State 3 major functions of the I/O module of a Computer

	System	(3 Mk)
ii.	Describe the sequence of step that might be involved in transfe	er
	of data from an external device to the processor.	(5 Mk)
iii.	Name four components involved in Process Communication	(4 Mk)
iv.	Using a clearly labeled block diagram, illustrate the architectur	re
	of a micro-Programmed Control Unit	(8 Mk)

QUESTION 4: INSTRUCTIONS SET (20 Mk)

i.	Outline four elements of a machine Instruction	(8 Mk)
ii.	What is Accumulator?	(2 Mk)
iii.	Briefly explain the concept of Base Register Addressing	(2 Mk)
iv.	The bulk of the binary information in a digital computer is	
	stored in memory. With clear explanation outline where	
	Computations are done?	(4 Mk)
v.	With brief explanation, describe any four types of memory	
	Registers	(4 Mk)

QUESTION FIVE: Parallel Organization 20 Mk

i.	Explain three models that have been used over time to enhance	
	Instruction-level Parallelism in computer architecture	(6 Mk)
ii.	Outline one way in which modern processer design is	
	controlling power Density	(2 Mk)
iii.	Using a clearly labeled block diagram, outline the structure	
	of a Intel Core Duo processor	(4 Mk)
iv.	Describe the four categories of Parallel Processor systems as	
	outline in Flynn's Taxonomy	(8 Mk)