

(Knowledge for Development)

KIBABII UNIVERSITY COLLEGE

- A CONSTITUENT COLLEGE OF
- MASINDE MULIRO UNIVERSITY OF

SCIENCE AND TECHNOLOGY

UNIVERSITY EXAMINATIONS

2014/2015 ACADEMIC YEAR

SECOND YEAR SECOND SEMESTER

MAIN EXAMINATION

FOR THE DEGREE OF BSC COMPUTER SCIENCE

COURSE CODE: CSC 224

COURSE TITLE: DATA STRUCTURES

DATE: 29TH APRIL, 2015 **TIME**: 800AM-10.00AM

INSTRUCTIONS TO CANDIDATES

Answer Question One in Section A and Any other TWO (2) Questions in Section B

TIME: 2 Hours

Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no question is missing.

QUESTION 1 (COMPULSORY)

2

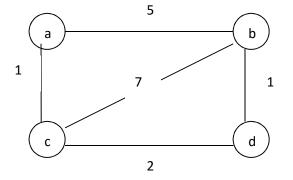
ŕ	node n	, give	ay implementation of a binary tree, the root of the tree is in po- give the position of n's left child and n's right child. n array with exactly 15 elements:									osition 0. For each [2 marks]	
0)	1	2	3 4	•	5 7	8 9	10	11	12	13	14	15	
i ii	wil . Suj	l be f	ound by that we	examining are doing	g/compa a binary	ring two o	or fewe r an el	er num ement	bers fi . Write	rom the	e arra lemer	ements that y. [2 marks] nts that will [3 marks]	
c)	What i	s the	load fact	or and ho	w does it	t affect tab	ole size	e?			I	[2 marks]	
d)	Th		ation whe	a hash ta ere two el		or keys ma	ıp to tl	ne sam	e loca	tion in		[1 mark] able is called	
e)	Why is	sorti	ng impoi	rtant?							I	[1 marks]	
f) g) h)	If the characters 'D', 'C', 'B', 'A' are placed in a queue (in that order), and then removed one at a time, in what order will they be removed? [1 mark] What are the steps to inserting a new item at the head of a linked list? Use one short English sentence for each step. [2 marks] Given an array containing the digits 5 3 9 5 , show how the order of the digits changes during each step of [i] insertion sort, [ii] selection sort,[iii] mergesort, and [iv] bubble sort. Show the array after each swap, except in insertion sort. For insertion sort, show the array												
	after each insertion. [6 marks]											[6 marks]	
i)	Draw t	ne di	⁰	aph that c	orrespon 2	as to this	aajace	ency m	atrix:		I	[3 marks]	
	0		true	false	true	false							
	1		true	false	false	false							
	2		false	false	false	true							
	3		true	false	true	false							

[30 MARKS]

[1 marks]

[2 marks]

[4 marks]


- j) What is the importance of the stopping case in recursive methods?
- k) Outline any two implementation strategies for binary trees
- 1) Briefly describe the following data structures.
 - i. Stack
 - ii. Queue
 - iii. Linked list
 - iv. Hash table

QUESTION 2

- a) Draw the directed graph that is represented by the following: [4 marks] Vertices: 1, 2, 3, 4, 5, 6, 7 Edges: (1, 2), (1, 4), (2, 3), (2, 4), (3, 7), (4, 7), (4, 6), (5, 6), (5, 7), (6, 7)
- b) Outline two principal methods for representing graphs for computer algorithms
 - [4 marks]

(20 marks)

- c) If a graph is sparse which representation will you use and why? [2 marks]
- d) Consider the weighted graph given below:

Represent the weighted graph using the two representation methods described in part (b) above. [4 marks]

- e) Define the following terms
 - i. Spanning tree
 - ii. Minimum spanning tree
- f) Let A be the adjacency matrix of an undirected graph. Explain what property of the matrix: [4 marks]
 - i. indicates that the graph is complete.
 - ii. the graph has a loop, i.e., an edge connecting a vertex to itself.
 - iii. the graph has an isolated vertex, i.e., a vertex with no edges incident to it.

QUESTION 3

(20 marks)

a) State with reasons whether the following binary tree is a heap structure or not:

199 / \ 187 146 / \ / \ 198 181 144 111

b) Draw an expression tree for the expression (90 + 40) * 50 + (40 - (60 - 30)).

[4 marks]

[2marks]

- c) Give the output of the three traversal orders of the generated expression tree. [6 marks]
- d) Draw the binary search tree that results from adding the following integers (134, 145, 13, 187, 165, 132, 11, 112, 117). [4 marks]

[2 marks]

e)	i. List the leaf nodes of the tree. What problem does binary search tree suffer from?	[2 marks] [2 marks]								
Question 4										
a)	Distinguish between a table and a record.	[2 marks]								
b)	What is a dictionary in the context of data structures?	[2 marks]								
c)	Distinguish between open addressing and closed addressing in hash tables.	[2 marks]								
d)	Suppose that an open-address hash table has a capacity of 900 and it contains 100 elements.									
	What is the table's load factor?	[1 marks]								
e)	Define the following as relates to hash tables:									
	i. Perfect hashing function	[1 mark]								
f)	Briefly describe one algorithm that is used for resolving collisions in a has	h table.								
		[4 marks]								
g)	Draw a hash table with open addressing and a size of 13. Use the hash fun	ction								
	"k%11". Insert the keys: 33, 5, 29, 20, 0, 22, 35, 47 and 18 into your table	(in that								
	order).	[5 marks]								
h)	State the strategy used to resolve any collisions.	[2 marks]								
i)	What is the load factor of the hash table?	[1 mark]								

Question 5

Here is an INCORRECT pseudo code for the algorithm which is supposed to determine whether a sequence of parentheses is balanced:

```
declare a character stack
while ( more input is available)
{
    read a character
    if ( the character is a '(' )
        push it on the stack
    else if ( the character is a ')' and the stack is not empty )
        pop a character off the stack
    else
        print "unbalanced" and exit
    }
    print "balanced"
```

a) What will be the output of the above algorithm for each of the following unbalanced sequences? [8marks]

i. ((()) ii. ())(() iii. (()())) iv. (()))()

b) Write the correct algorithm so that it outputs unbalanced only if the sequence is unbalanced.

[6 marks]

c) Suppose that p, q, and r are all references to nodes in a linked list with 15 nodes. The variable p refers to the first node, q refers to the 8th node, and r refers to the last node. Write a few lines of code that will make a new copy of the list. Your code should set THREE new variables called x, y, and z so that: x refers to the first node of the copy, y refers to the 8th node of the copy, and z refers to the last node of the copy. [6 marks]