<u>COURSE CODE</u>: CSC 224 <u>COURSE TITLE</u>: DATA STRUCTURES

FOR THE DEGREE OF BACHELOR OF SCIENCE

2012/2013 ACADEMIC YEAR

SEMESTER II

KIBABII UNIVERSITY COLLEGE

<u>01</u>	UESTION 1 (COMPULSORY)	[30 MARKS]
a)	Distinguish between a queue and a stack.	[2 marks]
b)	Why is sorting necessary?	[1 marks]
c)	Describe briefly	[4 marks]
,	i. any one sorting algorithm and	
	ii. any one searching algorithm	
d)	Illustrate the operation of the sorting algorithm described in part (c) :	i above on the
	following list of integers	[2 marks]
	57, 23, 11, 74, 39, 40, 65	

e) The diagram below shows an array representation of a binary tree. Draw the tree. [4 marks]

D	А	Т	А	S	Т	R	U	С	Т	U	R	E
---	---	---	---	---	---	---	---	---	---	---	---	---

- f) Write the code segment which is used to insert a new node, referenced by the reference variable newNode, between the nodes referenced by the reference variables prev and curr in a linear linked list. [3 marks]
- g) Suppose we begin with an empty stack, and perform the following operations: push 7, push 2, push 9, push 6, pop, pop, peek, push 1, push 3, peek, push 8, pop, peek, pop, push 5, push 4, pop, pop, push 8. What is contained on the stack when we are done? Write out the contents from top to bottom. [2 marks]
- h) The two most fundamental data structures are arrays and linked lists. Briefly describe the two data structures [2 marks]
- i) Given two scenarios: the first in which a problem solution involves a dynamic list (i.e. list in which there are a lot of deletions and insertions) and the second in which a problem involves many accesses to the interior values of a list. State with reasons which data structure will be suitable for each of the two scenarios? [3 marks]

j)	Name and describe the two types of algorithm efficiency.	[2 marks]
k)	Outline any two applications of the stack data structure	[2 marks]

- 1) Give a definition of the following as they relate to algorithms: [4 marks]
 - i) Big oh (O)
 - ii) Big omega (Ω)
 - iii) Big theta (Θ)
 - iv) Worst-case algorithmic analysis

KIBABII UNIVERSITY COLLEGE

QUI	ESTION 2				(2	<u>0 marks)</u>
a)	What is the func the head variabl	ction of the ve?	variable head whe	en used with a lin	ked list? What	is the data type of marks]
b)	Draw a diagram the name of a ci named head to i Chicago, 23.2, I	of a linked ty and type ndicate the l Denver, 7.2.	list that contains double that conta beginning of the l	nodes with data i ins a pollution in ist. Insert the fol	tems of type Str dex. Include an lowing nodes: 1 [3]	ing that contains instance variable Franklin, 15.7, marks]
c)	Create a generic	Node class	to represent the l	inked list depicte	ed in your diagra	ms above.
					[1	0 marks]
d)	Write a method number (c) ab	called displation ove.	ayList that displa	ys the data items	in the Node clas	ss created in [5 marks]
<u>QUI</u>	ESTION 3				(2	<u>0 marks)</u>
a)	Distinguish betw	ween a bina	ry search tree and	l a binary tree.		[2 Marks]
b)	Draw the resulti 12, 1, 3, 9.	ng binary se	earch tree insertin	g the following v	values in the give	en order: 7, 10, 5, [2 marks]
c)	What problem d	loes binary s	earch tree suffer	from?		[2 marks]
d)	Describe any tw	o methods f	or storing binary	trees in the comp	outer	[4 marks]
e)	Determine the e	xpression tr	ee for the followi	ng expression:		[4 marks]
	(2 * x) / (5 +	3 * y) - (4 *	z - 1)			
f)	Construct a Huf	fman code f	or the following	data:		[6 marks]
	Character	А	В	С	D	E
	Probability	0.1	0.1	0.2	0.2	0.4

'ks]
·

h) Decode the text whose encoding is 100010111001010 in the code of question b). [2 marks]

Question 4

a)	Describe why a very large hash table will likely increase the performance (i.e. fa and lookup) at the expense of wasting memory, and vice versa, why a small has	aster additions h table will
	use less memory but result in a decrease in performance.	[4 marks]
b)	What is our goal for a hashing function?	[2 marks]
c)	Define the following as relates to hash tables:	
	i. Collision	[1mark]
	ii. Perfect hashing function	[1 mark]
	iii. Load factor	[2 marks]
d)	Briefly describe one algorithm that is used for resolving collisions in a ha	sh table.
		[4 marks]

e) Draw a hash table with open addressing and a size of 9. Use the hash function "k%9". Insert the keys: 5, 29, 20, 0, 27 and 18 into your table (in that order). [6 marks]

Question 5

a)	Wha	t is the difference between a graph and a tree?	[2 marks]
b)	Defi	ne the following	[3 marks]
	i.	Undirected graph	
	ii.	Directed graph	
	iii.	Complete graph	
	iv.	Cycle in a graph	
c)	Drav	w the directed graph that is represented by the following:	
	Vert	ices: 1, 2, 3, 4, 5, 6, 7	
	Edge	es: (1, 2), (1, 4), (2, 3), (2, 4), (3, 7), (4, 7), (4, 6), (5, 6), (5, 7), (6, 7)	
	i.	Is the resulting graph connected?	[2 marks]
	ii.	Is the resulting graph complete?	[2 marks]

- d) Describe two principal methods for representing graphs for computer algorithms [4 marks]
- e) If a graph is sparse which representation will you use and why? [2 marks]
- f) Consider the weighted graph given below:

Represent the weighted graph using the two representation methods described in part (d) above. [4 marks]