

KIBABII UNIVERSITY COLLEGE (A Constituent College of MasindeMuliro University of Science Technology) P.O. Box 1699-50200 Bungoma, Kenya Tel. 020-2028660/0708-085934/0734-831729 E-mail: enquiries@kibabiiuniversity.ac.ke

## UNIVERSITY REGULAR EXAMINATIONS

## 2012 /2013 ACADEMIC YEAR

## FOR THE DEGREE OF

## **BACHELOR OF SCIENCE (MATHEMATICS)**

COURSE CODE: MAT 204

COURSE TITLE: REAL ANALYSIS I

DATE: 19<sup>th</sup> August 2013

**TIME:** 9.00 pm – Noon

## **INSTRUCTIONS**

This paper consists of **TWO** sections; **A** and **B**. Answer **BOTH** questions in **SECTION A** and **ANY OTHER THREE** questions from **SECTION B**.

### **SECTION A**

Answer **BOTH** questions in this section.

## **QUESTION 1 (16 marks)**

- a. Define the following terms;
  - i. Monotone function ii. Subsequence
  - ii. Infimum of a set iv. Function (4 marks)
- b. Prove by Mathematical Induction that for all natural numbers,

$$\sum_{k=1}^{n} k^{2} = 1^{2} + 2^{2} + \ldots + n^{2} = \frac{1}{6} n(n+1)(2n+1)$$
(4)

marks)

- c. Suppose that  $X_n \rightarrow l$  as  $n \rightarrow \infty$  and that  $\langle X_{n_r} \rangle$  is a subsequence of  $\langle N_{n_r} \rangle$ 
  - $x_n >$ . Prove that

$$x_{n_k} \rightarrow l \operatorname{asr} \rightarrow \infty$$
 (4)

marks)

d. Prove that if the series  $\sum_{n=1}^{\infty} a_n$  converges, then  $a_n \rightarrow 0$  as  $n \rightarrow \infty$ .

(4 marks)

## **QUESTION 2 (15 MARKS)**

- a. Show that if x and y are positive, then x < y if and only if  $x^2 < y^2$ . (4 marks)
- b. Draw a diagram illustrating the set of all(x, y) such that

$$Y = \begin{cases} 5 & \text{if } x \ge 1 \\ 2 & \text{if } x < 1 \end{cases}$$

Explain why this is a graph of a function from R to itself. What is the range of this function? What is the image of the set [1, 2] under this function? (3 marks)

- c. Prove De Morgan's Law; (A  $\bigcup$  B)' = A'  $\cap$  B'. (4 marks)
- d. Consider the set {x:  $2 \leq x i$  3}. State the maximum, minimum, lub and glb if the exist. Is the set bounded? (3 marks)

#### **SECTION B (39 MARKS)**

### Answer ANY THREE questions in this section.

## **QUESTION 3 (13 MARKS)**

a. Let *f* be increasing and bounded above on (a, b) with least upper bound *L*. Prove that f(x)

$$\overrightarrow{}$$
 L as x  $\overrightarrow{}$   $b^{\acute{c}}$ 

(6 marks)

b. State what is meant by " a function f is continuous at c on an interval , a < c < b. How then can discontinuity arise at c? Classify the type of discontinuity in each case.

(7 marks)

## **QUESTION 4 (13 MARKS)**

- a. Define a convergent sequence, and a Cauchy sequence. (2 marks)b. Prove that any convergent sequence is a Cauchy sequence. (5 marks)
- c. Show that every Cauchy sequence is bounded. (6 marks)

#### **QUESTION 5 (13 MARKS)**

a. Let *f*: (0, 
$$\stackrel{\infty}{\longrightarrow}$$
)  $\xrightarrow{\longrightarrow} \stackrel{R}{\longrightarrow}$  be defined by  
 $f(x) = \frac{1}{x}$  (x > 0). Discuss how this function is bounded. Does it attain any

maximum and/or minimum? If so, where? (3 marks)

b. Let  $f: [0, 1] \xrightarrow{\rightarrow} [0, 1]$  be defined by

$$f(x) = \frac{1-x}{1+x}$$
,  $(0 \quad x \leq 1)$ 

and let  $g: [0, 1] \xrightarrow{\rightarrow} [0, 1]$  be defined by

 $g(x) = 4x(1-x), (0 \le x \le 1).$ 

Find a formula for f ° g and g ° f and show that these functions are not the same.

Show that  $f^{-1}$  exists but that  $g^{-1}$  does not exist. Find a formula for  $f^{-1}$ . (10 marks)

## **QUESTION 6 (13 MARKS)**

Let *f* be defined on an interval (a, b) except possibly at a point  $\xi \in G$  (a, b). Demonstrate that

$$f(\mathbf{x}) \stackrel{\rightarrow}{\rightarrow} l \text{ as } \mathbf{x} \stackrel{\rightarrow}{\rightarrow} \stackrel{\xi}{} \text{ if and only if } f(\mathbf{x}) \stackrel{\rightarrow}{\rightarrow} l \text{ as } \mathbf{x} \stackrel{\rightarrow}{\rightarrow} \stackrel{-\dot{k}}{\xi^{i}} \text{ and } f(\mathbf{x}) \stackrel{\rightarrow}{\rightarrow} l \text{ as } \mathbf{x} \stackrel{\rightarrow}{\rightarrow} \stackrel{+\dot{k}}{\xi^{i}} \text{ and } f(\mathbf{x}) \stackrel{\rightarrow}{\rightarrow} l \text{ as } \mathbf{x} \stackrel{\rightarrow}{\rightarrow} \stackrel{+\dot{k}}{\xi^{i}} \frac{1}{\xi^{i}} \text{ and } f(\mathbf{x}) \stackrel{\rightarrow}{\rightarrow} l \text{ as } \mathbf{x} \stackrel{\rightarrow}{\rightarrow} \stackrel{+\dot{k}}{\xi^{i}} \frac{1}{\xi^{i}} \frac{1$$

# **QUESTION 7 (13 MARKS)**

- a. If *F* is a countable collection of disjoint sets, say  $F = \{A_1, A_2, ...\}$  such that each set  $A_n$  is countable, show that the union  $ik = 1i \otimes A_k$  is also countable. (6 marks)
- b. Define an open set and prove that the union of any collection of open sets is an open set. (7 marks)