

(Knowledge for Development)

KIBABII UNIVERSITY COLLEGE

A CONSTITUENT COLLEGE OF MASINDE MULIRO UNIVERSITY OF

SCIENCE AND TECHNOLOGY

UNIVERSITY EXAMINATIONS

2014/2015 ACADEMIC YEAR

THIRD YEAR SECOND SEMESTER

MAIN EXAMINATION

FOR THE DEGREE OF BACHELOR OF SCIENCE

MATHEMATICS

COURSE CODE: MAT 302

COURSE TITLE: REAL ANALYSIS III

DATE: 27/4/15 **TIME**: 8AM -10 AM

INSTRUCTIONS TO CANDIDATES

Answer Question One in and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 4 Printed Pages. Please Turn Over.

QUESTION ONE (30 MARKS)

- a) Let $\sum_{n \in IN} x_n$ be a series of elements of IK. Show that this series converges if and only if for each real number $\vee > 0$ there is $N(\vee) \in \mathbb{N}$ such that $\left| \sum_{k=m}^{n} x_k \right| < \vee$ for all $n \ge m \ge N(\vee)$. (4 mks)
- b) Define the term absolute convergence of a series. Show that if $\sum_{n \in N} z_n$ is absolutely convergent
 - then $\sum_{n \in IN} z_n$ is convergent but the converse need not be true. (5mks)
- c) Let (X,...) be a compact metric space and $f:(X,...) \rightarrow (IR,d)$ be continuous. Show that f is bounded. If $m = \inf \{f(x): x \in X\}$ and $M = \sup \{f(x): x \in X\}$ show that there are points $x, x' \in X$ where f(x) = m and f(x') = M. (4mks)
- d) Show that all the monotonic functions on bounded intervals are functions of bounded variation. (3mks)
- e) Define the term total variation. Let f be of bounded variation on the closed interval [a,b]and $c \in (a,b)$ i.e. a < c < b. Show that $f \in BV[a,c], f \in BV[c,b]$ and $V_f[a,b] = V_f[a,c] + V_f[c,b].$ (5mks)
- f) Define what is meant by a function f being Riemann-Stieltjesintegrable. (5 marks)
- g) Suppose $f:[a,b] \to IR$ is given and Γ is increasing on [a,b]. If both f and Γ have a right discontinuity (or left discontinuity) at some point c of [a,b], show that $f \in \Re(\Gamma)$. (4 mks)

QUESTION TWO (20 MARKS)

- a) Let $(x_n), (y_n)$ be convergent sequences of real numbers with limits x, y respectively and let $x_n \le y_n \ \forall n \in \mathbb{N}$. Show that $x \le y$. (4 marks)
- b) Let $(x_n), (y_n), (z_n)$ be sequences of real numbers such that $x_n \le z_n \le y_n \ \forall n \ge N$ (N is a fixed integer). Let $(x_n), (y_n)$ both converge to the same limit say L, show that $z_n \to L$ as $n \to \infty$.

(3 marks)

(4 marks)

c) Show that $\lim_{n \to \infty} \sqrt[n]{n}$ exists and is 1.

d) Let f be of bounded variation on the closed interval [a,b] and $x \in (a,b]$ i.e. $a < x \le b$, then $f \in BV[a,x]$. Define a new function v on [a,b] by

$$v(x) = \begin{cases} V_f[a,x] & \text{if } x \in (a,x] \\ 0 & \text{if } x = a \end{cases}$$

- i. Show that v is monotonic increasing on [a,b].
- ii. Let D = v f. Show that D is monotonic increasing on [a,b].
- iii. Show that at each $x \in (a, b)$ the limits f(x-), f(x+) exist. (9 marks)

QUESTION THREE (20 MARKS)

a) Show that the series
$$\sum_{n \in IN} s^n$$
 is convergent if $|s| < 1$ and divergent if $|s| \ge 1$.

(4 marks)

- b) Let $\sum_{n \in IN} a_n$ be a series of positive terms. Let $\lim_{n \to \infty} \frac{a_{n+1}}{a_n}$ exist say L. Show that
 - i. If L<1 the series is convergent
 - ii. If L>1 the series is divergent. (6 marks)
- c) Let $\sum_{n \in \mathbb{N}} a_n$ be a series of positive terms. Let $\lim_{n \to \infty} \frac{a_{n+1}}{a_n}$ and $\lim_{n \to \infty} a_n^{\frac{1}{n}}$ both exist and equal to say L. Show that if L=1 then both the ratio and root tests fail the convergence test by using the series $\sum_{n \in IN} \frac{1}{n}$ and $\sum_{n \in IN} \frac{1}{n^2}$. (5 marks)
- d) Let $f:[a,b] \to IR$ be bounded and Γ be increasing on [a,b]. If $P_1, P_2 \in \mathbb{P}[a,b]$ and $P_1 \subseteq P_2$ (i.e. P_2 is finer than P_1), show that
 - i. $L(f, r, P_1) \leq L(f, r, P_2)$
 - ii. $U(f, r, P_1) \ge U(f, r, P_2)$ (5 marks)

QUESTION FOUR (20 MARKS)

- a) Let (X, ...) be a metric space and $f:(X, ...) \rightarrow (IR, d)$ be continuous. Let $a, b \in X$, f(a) > 0and f(b) < 0. Show that there are neighbourhoods N(a), N(b) of a, b respectively such that $f(x) > 0 \forall x \in N(a)$ and $f(x) < 0 \forall x \in N(b)$. (4 marks)
- b) Let $f:[a,b] \rightarrow IR$ be continuous. Show that
 - i. If f(a), f(b) have opposite signs i.e. f(a)f(b) < 0, then there exists $c \in (a, b)$ i.e. a < c < b such that f(c) = 0.
 - ii. If $f(a) \neq f(b)$ and k is any number between f(a) and f(b), then there exists $c \in (a, b)$ i.e. a < c < b such that f(c) = k.

(8 marks)

c) Let f be of bounded variation on the closed interval [a,b]. Show that f is bounded.

(4 marks)

d) Let $(f_n)_{n=1}^{\infty}$ be a sequence of functions defined on a set E of real numbers. Show that there exists a function f such that $f_n \to f$ uniformly on E if and only if the following (called the Cauchy condition) is satisfied; for every $\vee > 0$ there exists an integer n_0 such that $m \ge n_0, n \ge n_0$ implies $|f_m(x) - f_n(x)| < \vee$ for every $x \in E$.

(4 marks)

QUESTION FIVE (20 MARKS)

- a) Define the following terms
 - i. Power series
 - ii. Radius of convergence

(2 marks)

- b) Let $f:(a,b) \to IR$ be monotonic. Then show that at each point $c \in (a,b)$ i.e. a < c < b, the one-sided limits f(c-), f(c+) exist. Suppose f is increasing show that $f(c-) \le f(c) \le f(c+)$. If $x, y \in (a,b)$ and x < y, show that $f(x+) \le f(y-)$. Moreover show that all points of discontinuity of f are of simple kind and the set of all points of discontinuity is at most countable.
 - (10 marks)
- c) Let $f:[a,b] \to IR$ be bounded and Γ be a monotonic increasing function on [a,b]. Show that $f \in \Re(\Gamma)$ on [a,b] if and only if for every real $\vee > 0$ there exists $P \in \mathbb{P}[a,b]$ such that $U(f,\Gamma,P)-L(f,\Gamma,P) < \vee$.

(5 marks)

d) Define the terms pointwise convergence and uniform convergence in relation to sequence of functions.

(2 marks)