

(Knowledge for Development)

KIBABII UNIVERSITY COLLEGE

A CONSTITUENT COLLEGE OF MASINDE MULIRO UNIVERSITY OF

SCIENCE AND TECHNOLOGY

UNIVERSITY EXAMINATIONS

2014/2015 ACADEMIC YEAR

FOURTH YEAR SECOND SEMESTER

MAIN EXAMINATION

FOR THE DEGREE OF BACHELOR OF SCIENCE AND BACHELOR OF EDUCATION

COURSE CODE: MAT 404

COURSE TITLE: DIFFERENTIAL TOPOLOGY

DATE: 29/4/15 **TIME**: 8.00AM -10.00AM

INSTRUCTIONS TO CANDIDATES

Answer Question One in and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 3 Printed Pages. Please Turn Over.

QUESTION 1 (30 MARKS)

a) Prove that the circle $S^{1} = \{(x, y) \in \mathbb{R}^{\mathbb{Z}} | x^{\mathbb{Z}} + y^{\mathbb{Z}} = 1\}$ is a one-dimensional manifold.

(8marks)

(2marks)

- b) Show that if M is compact and $y \in N$ is a regular value of f then $f^{-1}(y)$ is a finite set. (6 marks)
- c) Define a manifold
- d) Suppose $Z = f^{-1}(y)$ for a regular value y of the mapping $f: X \to Y$. Prove that $Ker[df_x: T_x X \to T_y Y] = T_x Z$ at any point $x \in \mathbb{Z}$. (8marks)
- e) Prove that any point in a smooth manifold M has an open neighborhood in M which is diffeomorphic to an open subset of $\mathbb{R}^{\mathbb{N}}$. (6marks)

QUESTION 2 (20 MARKS)

- a) Show that $X \times Y \subset \mathbb{R}^M \times \mathbb{R}^N$ is a smooth manifold (8marks)
- b) Show that the tangent space $T_x(M)$ has the same dimension as the smooth manifold M.(6marks)
- c) State local immersion theorem without prove. (2marks)
- d) Suppose that $f: X \to Y$ is a diffeomorphism and $df_x: T_x(X) \to T_{f(x)}(Y)$. Prove that the dimensions of the two manifolds are same. (4marks)

QUESTION 3 (20 MARKS)

- a) Show that an embedding f: X → Y maps X diffeomorphically into a submanifold of Y. (10marks)
 b) Show that every k dimensional manifoldadmits a one-to-one immersion in ℝ^{2k+1}(6marks)
- c) Show that a proper map $\rho: X \to \mathbb{R}$ exists on any manifold X (4marks)

QUESTION 4 (20 MARKS)

- a) Show that the tangent vector with respect to parametrization { is also the tangent vector with respect to parametrization φ^{r} . (6marks)
- b) Show that any smooth map f of the closed unit ball $\mathbb{D}^n \subset \mathbb{R}^n$ into itself has a fixed point.(8marks)
- c) Let M be a compact manifold with boundary. Prove that there does not exist a smooth map $f: M \to \partial M$ that leaves every point of the boundary fixed. (6marks)

QUESTION 5 (20 MARKS)

- a) Let $f: M \to N$ be an imbedding, where M is a (non-empty) compact n-dimensional smooth manifold and N is a connected n-dimensional smooth manifold. Show that f is a diffeomorphism. (4marks)
- b) Show that the orthogonal group O(n) is a Lie group (8marks)
- c) State the Inverse function theorem without prove. (2marks)
- d) Suppose that $f: X \to Y$ is a submersion at x, and y = f(x). Prove that there exists coordinate around x and y such that $f(x_1, ..., x_k) = [x_1, ..., x_l]$ on Neighbourhoods N(x) and M(y). (6marks)