

(Knowledge for Development)

KIBABII UNIVERSITY COLLEGE

A CONSTITUENT COLLEGE OFMASINDE MULIRO UNIVERSITY OF

SCIENCE AND TECHNOLOGY

UNIVERSITY EXAMINATIONS

2014/2015 ACADEMIC YEAR

SECOND YEAR SECOND SEMESTER

MAIN EXAMINATION

FOR THE DEGREE OF BACHELOR OF SCIENCE AND BACHELOR OF EDUCATION

COURSE CODE: MAT 204

COURSE TITLE: REAL ANALYSIS I

DATE: 29/4/15 **TIME**: 11.30AM -1.30PM

INSTRUCTIONS TO CANDIDATES

Answer Question One in and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 3 Printed Pages. Please Turn Over.

QUESTION ONE (COMPULSORY) (30 MARKS)

a) Show that if $x \neq 0$, then $x^{-1} \neq 0$ and x^{-1} is unique.	(3mks)	
b) For every $x \neq 0$, show that $x^2 > 0$, hence show that $1 > 0$.	(3mks)	
c) Let (S, <) be an ordered set and E a subset of S, if the least upper bound and the greatest lower bound of E (glbE) exist. Show that i) the lubE (4 mks)	· · · ·	
ii) the glb.E is unique.	(4 mks)	
d) Show that $\sqrt{3}$ is an irrational number.	(4mks)	
e) State the completeness axiom for $ \mathfrak{R} $	(2mks)	
f) Let A be a nonvoid subset of $\ \mathfrak{R}$ which is bounded above. Define a set		
B by $B = \{-x; x \in A\}$, show that B is bounded below and		
-sup A= inf B.	(4mks)	
g) If a and b are given real numbers such that for every real number		
$V > 0$, $a \le b + V$, show that $a \le b$	(5mks)	
h) Define an inductive set?	(2mks)	

QUESTION TWO (20 MARKS)

a) For any subset E of a metric space (X, ...), prove that E^0 is an open set.

(6mks)

- b) Consider the metric space (\mathfrak{R}, d) and let $f : \mathfrak{R} \to \mathfrak{R}$ be defined by f(x) = |x|. Show that f is uniformly continuous. (6mks)
- c) Show that the limit of a convergent sequence is unique in a metric space (8mks)

QUESTION THREE (20 MARKS)

- a) Show that every infinite set E contains a countable subset A. (7mks)
- b) Differentiate between an algebraic and a transcendental number giving examples in each case (3mks)

c)	Does the equation $x^2 + 1 = 0$ have a solution in \Re ? Show your working.	(4mks)
----	---	--------

d) Define the following terms;

i.	A metric space	(4mks)
ii.	An interior point of a set E	(2mks)

QUESTION FOUR (20 MARKS)

a) Suppose that an open interval (0,1) is equivalent to \mathfrak{R} . Show that \mathfrak{R} is uncountable (10mks)

b) State and provide a proof of Cauchy –Schwarz inequality. (10mks)

QUESTION FIVE (20 MARKS)

a) Let A and B be nonvoid subsets of \Re and define the set $A + B = \{x + y; x \in A, y \in B\}$,

b)

- i. If A and B are bounded above, then show that A+B is also bounded above and sup(A+B)=sup.A+sup.B
- ii. (5mks)
- iii. If A and B are bounded below, then show that A+B is also bounded below and inf.(A+B)=inf.A+inf. B (5mks)
- c) For every real numbers x and a, a > 0, show that $|x| \le a$ iff $x \in [-a, a]$ (4mks)
- d) Let A, B, C be nonvoid sets and $f: A \to B$ and $g: B \to C$ be bijections. Then, prove that $(g \circ f)^{-1}$ exists and $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$. (6 mks)