KIBABII UNIVERSITY COLLEGE FIRST YEAR FIRST SEMESTER 2014 EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE IN MATHEMATICS *COURSE CODE*: **MAT 121**; TIME: 3 HOURS *COURSE TITLE*: **CALCULUS I**

Attempt Question ONE and ANY Other TWO questions

QUESTION 1 (30MARKS)

(a) Obtain the derivatives of the function $f(x) = x^4 + 12x$ using delta method. [6mks] (b) Find points where the curve $y = x^4 - 2x^2 + 2$ has a horizontal gradient. [2mks] (c) Given that $y = \frac{2x+3}{1-5x}$, find $\frac{dy}{dx}$. [6mks] (d) Find $\frac{dy}{dx}$ given that $y^3 + 6x = x^2$. [2mks](e) Find $\frac{dy}{dx}$ if $y = ln(2x^2+3x)$. [2mks] (f) Given that $y = \frac{1}{r}(x^2 + \frac{1}{r})$ find $\frac{dy}{dr}$. [4mks] (g) Find y'' given that $y = 3x^3 - 4x + 4$. [2mks] (h) Find the value of c satisfied by the conclusion of Rolle's Theorem for, $f(x) = x^3 - 3x^2 + 2x + 2$ on the interval [0, 1]. [6mks] QUESTION 2 (20MARKS) (a) Differentiate the following w.r.t x (i) $y = \frac{(3x+1)^4}{(5x-2)^3}$ [4mks] (ii) $y = x(x+3)^4$ [4mks] (iii) $y = \frac{1}{\sqrt{(x^2 - 2)}}$ [4mks] (b) Water runs into a conical tank at the rate of $9ft^3/min$. The tank stands point down and has a height of 10 ft and a base radius of 5 ft. How fast is the [8mks] water level rising when the water is 6ft deep? QUESTION 3 (20MARKS) (a) Investigate the stationary values of the function, $y = x^3 - 2x^2 - 4x.$ $[10 \mathrm{mks}]$ (b) Given that $x = \frac{1}{t}$; $y = 3t^2 + 2$ find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ in terms of t. [10 mks]QUESTION 4 (20MARKS) (a) Sketch the curve given by $y = \frac{(x+3)}{(x-1)}$. $[10 \mathrm{mks}]$ (b) Find $\frac{dy}{dx}$ using first principles given that y = cosx. $[10 \mathrm{mks}]$

QUESTION 5 (20MARKS)

(a) Calculate how rapidly the fluid level inside a vertical cylindrical tank drops if we pump the fluid out at the rate of 3000/L min. [10mks] (b) Find $\frac{dy}{dx}$ if $y = \cot^4(3x^2+2x-1)$. [10mks]